Arithmetic sequence

$$
T(n)=a+(n-1) d
$$

$$
S(n)=\frac{n}{2}[2 a+(n-1) d]
$$

Geometric sequence

$$
\begin{aligned}
& T(n)=a r^{n-1} \\
& S(n)=\frac{a\left(r^{n}-1\right)}{r-1}
\end{aligned}
$$

$$
\text { Sum to infinity }=\frac{a}{1-r},-1<r<1
$$

In the figure, the 1 st pattern consists of 1 dot. For any positive integer n, the $(n+1)$ th pattern is formed by adding $(2 n+2)$ dots to the nth pattern. Find the number of dots in the 7 th pattern.

A. 41
B. 55
C. 71
D. 161

In the following sequence, the 1 st term, the 2 nd term and the 3 rd term are 1,2 and 3 respectively. For any positive integer n, the $(n+3)$ th term is the sum of the $(n+2)$ th term, the $(n+1)$ th term and the nth term. Find the 9 th term of the sequence.

$$
1,2,3,6,11, \ldots
$$

A. 51
B. 68
C. 125
D. 230

Which of the following are arithmetic sequences?
I. $\pi^{30}, \pi^{45}, \pi^{60}$
II. $30 \pi, 45 \pi, 60 \pi$
III. $\pi-30, \pi-45, \pi-60$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III

If $m>1$, which of the following are geometric sequences?
I. $2^{m}, 2^{2 m}, 2^{3 m}, 2^{4 m}$
II. $m, 2 m^{2}, 3 m^{4}, 4 m^{8}$
III. $\log m, \log m^{2}, \log m^{4}, \log m^{8}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III

The first negative term in the arithmetic sequence 2006,1998 , 1990 , ... is
A. -8 .
B. -6 .
C. -4 .
D. -2 .

If the sum of the first n terms of a sequence is $n^{2}+2 n$, then the 5 th term of the sequence is
A. 9 .
B. 11 .
C. 13 .
D. 35 .

The sum of all the positive terms in the geometric sequence $4,-2,1, \ldots$ is
A. 8 .
B. $\frac{8}{3}$.
C. $\frac{16}{3}$.
D. $\frac{16}{5}$.

The sum of the first 2 terms of a geometric sequence is 8 and the 3 rd term of the sequence is 18 . Find the 1st term of the sequence.
A. 2
B. 3
C. 2 or 32
D. 3 or 32

If $a-6, a, a+5$ is a geometric sequence, then the common ratio of the sequence is
A. $\quad-30$.
B. $\frac{5}{6}$.
C. $\frac{6}{5}$.
D. 6 .

If $h, 5, k$ are the first 3 terms of an arithmetic sequence and $h, 4, k$ are the first 3 terms of a geometric sequence, then $h^{2}+k^{2}=$
A. 36 .
B. 68 .
C. 84 .
D. 100 .

